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Abstract. Theoretical simulations and experimental studies have showed that many systems (like liquid
metals) can exhibit two phase transitions: gas-liquid and liquid-liquid. Consequently the fluid phase of
these systems presents two critical points, namely the usual gas-liquid (G-L) critical point and the liquid-
liquid critical point that results from a phase transition between two liquids of different densities: a low
density liquid (LDL) and a high density liquid (HDL). The van der Waals theory for simple fluids [Phys.
Rev. E 50, 2913 (1994)] is based on taking a system with purely repulsive forces as a reference, is able
to describe two stable first-order phase transitions between fluids of different densities. The particles in
our system interact via a total pair potential, which splits into a repulsive VR and a density-dependent
attractive VA part.

PACS. 64.70.Ja Liquid-liquid transitions – 64.60.Kw Multicritical points – 64.60.-i General studies of
phase transitions

1 Introduction

Simple fluids [1] are systems of identical particles whose
interactions can be described by a spherical symmetric
pair potential. They have been the object of considerable
research. One aspect of this research is to understand the
liquid-liquid transition that some pure substances can ex-
hibit. Recent experimental studies of phosphorus [2] show
a first-order phase transition between two stable liquids
of different densities: a low density liquid (LDL) and a
high density liquid (HDL). This transition has been shown
also, through numerical simulations and theoretical ap-
proaches [3–11]. A recent study [12] predicts the possible
existence of multiple liquid-liquid critical points.

In a previous study [13] we showed the existence of a
first-order isostructural solid-solid transition from a dense
to a more expanded solid phase. This phase transition ter-
minates in a solid-solid critical point, wherein we put for-
ward that two liquids of different densities might be able
to coexist. This coexistence would end in a liquid-liquid
critical point.

2 Potential and formalism

In the present work, the van der Waals theory for sim-
ple fluids [13] is used to verify the worthiness of the sce-
nario described above. In order to reproduce two loops in
the fluid phase, we assume that the particles in our sys-
tem interact via a total pair potential, which split into
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a simple hard-sphere (HS ) repulsion VR = VHS and a
density-dependent attraction VA,

V (r) = VHS(r) + VA(r, ρ). (1)

Tejero and Baus [14] have used the van der Waals theory
with the following density-dependent pair potential whose
range exhibits a nonmonotonic density variation

VA(r, ρ) =

{∞
−ε

(σ

r

)n(ρ)
r < σ
r ≥ σ

(2)

where ε is the amplitude of the potential and σ the
hard-sphere (HS) diameter. The potential index n(ρ) is
deduced from the equations that determine the critical
point of the fluid phase. It is given by

n(ρ) = 3 +
n(0) − 3

1 − 10
3 v0ρ + 25

6 (v0ρ)2
(3)

where v0 is the hard-sphere volume and n(0) (a potential
parameter) is the zero-density value which give the po-
tential index n(ρ). Tejero and Baus [14] showed that the
density dependence can lead to a liquid-liquid transition.
Monte Carlo calculations also confirm this result in a fluid
model with density-dependent interactions [15].

We note that from the mathematical definition of the
critical point [14], one can deduce that the critical den-
sity and temperature don’t depend on the n(0) value. So
the specific functional form of the potential proposed by
reference [14] presents a certain limit. We will be able
to remove this limit with the potential adopted in this
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study. It is completely different from the one used in [14].
Indeed, the strength of the attraction is taken to depend
on the density VA(r, ρ) = ε(ε1, ρ)f(r). The variation of ε1

in ε(ε1, ρ), reveals a double criticality in the fluid phase.
This functional form allows the study of the behaviour of
the density, temperature and pressure of the low-density
critical point and high-density critical point by varying
the potential parameter ε1 when n is fixed, and also by
varying n when ε1 is fixed.

The effective interaction when fitted to some experi-
ments such as colloidal systems and liquid metals, is found
to depend on density and/or temperature. For these sys-
tems, the thermodynamic properties can be affected by
this dependence [16].

We consider a simple fluid composed of N spherical
particles enclosed in a volume V at an equilibrium tem-
perature T and interacting via the pair potential V (r) de-
scribed above, in which the function ε(ε1, ρ) takes the form
of an exponential. The function f(r) is an inverse-power
potential. Obviously, many choices of f(r) are possible. So
the interaction V (r) can be written as follows

VA (r, ρ) =

⎧⎨
⎩

∞
−ε0 exp

(
−ε1

ρ

ρ0

)
1

(r/σ)n

r < σ
r ≥ σ

(4)

where r is the center-to-center distance and σ is the
HS diameter. While ρ is the number density and ρ0 =
0.495/v0(v0 is the hard-sphere volume). ρ0 represent the
maximum density for which the fluid phase can ex-
ist [13,17].

In addition, within the van der Waals theory, the re-
duced free energy per particle fof the system can be writ-
ten as the superposition of a repulsive (HS) and attractive
(A) contribution (see [13,17] for details).

f = fHS + fA (5)

where fHS is the free energy of the HS system. The equa-
tion of state for the HS given fHS is a simple free-volume
approximation. So that [1 − (ρ/ρ0)]V is the free volume
accessible to the HS in a fluid of volume V and (ρ/ρ0)V
is the excluded volume. Hence

fHS = t
[
ln

(
ρΛ3

) − 1
] − t ln

(
1 − ρ

ρ0

)
(6)

where t is the reduced temperature and Λ the thermal de
Broglie wavelength.

fA is the cohesion energy due to attractions. According
to [13,17], fA can be written as

fA = −2π

ε0
ρσ3 exp

(
−ε1

ρ

ρ0

) ∫ ∞

1

dxx2f(x) (7)

where x = r/σ. This allows us to write the free energy f
of the fluid as follows

f = t
[
ln

(
ρΛ3

) − 1
] − t ln

(
1 − ρ

ρ0

)

− 2π

ε0
ρσ3 exp

(
−ε1

ρ

ρ0

) ∫ ∞

1

dxx2f(x). (8)

From the expression of the free energy f , we deduced the
reduced pressure p and the reduced chemical potential µ.

p = η2 ∂f

∂η
(9a)

µ =
∂ (ηf)

∂η
(9b)

where η = ρv0 is the packing fraction.
The critical point is characterized by the fact that both

derivatives of the pressure vanish

∂p

∂η
= 0,

∂2p

∂η2
= 0. (10)

The complete fluid-fluid coexistence curve can be ob-
tained by solving the condition for two coexisting phases.
Namely, the pressures and the chemical potentials of the
two phases must be the same:

p(η1, t) = p(η2, t)
µ(η1, t) = µ(η2, t)

(11)

where η1 denotes the value of η for the low-density fluid
phase, and η2 that of high-density fluid phase.

The parameter controlling the decay rate ε1 is a “reg-
ulating parameter”. For the clearness we will henceforth
work with the inverse of ε1. It will be noted γ = (1/ε1).

3 Results

3.1 Effect of γ on the phase transitions

For γ = 0 one find a system of HS exhibiting an
order-disorder transition without any critical point [17].
From a critical value γc (this value will be determined be-
low), the phase diagram contains just the usual critical
point (G-L). This point will increase towards the upper
limit

Cl
n

(
ηl,n

c , tl,nc , pl,n
c

)
=

(0.1650, 1.76/(n − 3), 0.1089/(n − 3)) . (12)

This limit corresponds to a γ approaching infinity. So the
construction of the phase diagram will be done for γ values
between the interval zero and γc, where there is an evi-
dence of a double criticality. We choose γ and n so that
the free energy of the fluid is smaller than the free energy
of the solid. For a solid phase the free energy per parti-
cle fS can be reproduced from [17]. In order to construct
an accurate fluid phase diagram, we calculate the critical
points Ci,n

(
ηn

ci
, tnci

, pn
ci

)
, where 1 ≤ i ≤ 2: C1,n is the low-

density critical point and C2,n is the high-density critical
point, characterized by the three quantities ηn

ci
, tnci

and
pn

ci
. Then we perform Maxwell’s double tangent construc-

tion on each loop {li} developed by the free energy. We
find two coexisting curves in the fluid phase F 1

i,n − F 2
i,n

ending in the critical point Ci,n. This result corresponds
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Fig. 1. Phase diagram with two critical points C1,5 and C2,5

of a system interacting with a density dependent potential
with γ = 0.067 and n = 5 in the temperature-density plane,
where η = ρv0 is the packing fraction. The dots represent crit-
ical points.

to the gas-liquid F 1
1,n − F 2

1,n and LDL-HDL F 1
2,n − F 2

2,n

transitions.
The position of the critical points depends strongly

on the potential parameter γ. So by calculating equa-
tions (9a,10) and accepting only physical solutions,
namely a positive critical temperature and pressure and a
critical density lower than η0 = 0.495; the condition to get
a second critical point is found. It appears in the phase
diagram when

0 < γ ≤ γc = 0.29 (13a)

n > 3. (13b)

For γc = 0.29, the two limiting critical points are deduced

Cl
1,n

(
ηl,n

c1
, tl,nc1

, pl,n
c1

)
=

(0.0313, 0.3141/(n − 3), 0.0031/(n − 3)) (14a)

Cl
2,n

(
ηl,n

c2
, tl,nc2

, pl,n
c2

)
= (η0, 0, 0.2334/(n − 3)) . (14b)

Figures 1 and 2 show respectively the coexisting curves
of the fluid phase in the temperature-density and
pressure-temperature planes for (γ, n) = (0.067, 5). They
show that double criticality is obvious. For the same value
of n, Figures 3a–3f show the behaviour of the density,
temperature and pressure of the two critical points as the
potential parameter γ is varied.

It is known that the fluid cannot exist beyond the
density η0, and we have shown that γ must be lower
than 0.29 so that the phase diagram contains two crit-
ical points. Thus by increasing γ up to 0.29, C2,5 the
high-density critical point approaches the limiting critical
point Cl

2,5(ηl,5
c2

, tl,5c2
, pl,5

c2
) = (η0, 0, 0.1167); whereas C1,5 the

low-density critical point goes towards the other limiting
critical point Cl

1,5(η
l,5
c1

, tl,5c1
, pl,5

c1
) = (0.0312, 0.1571, 0.0016).

Beyond the critical value 0.29, C2,5 exists only in a purely
mathematical way. Indeed, the density of C2,5 is more
than η0, whereas the temperature is negative. So the
phase diagram will contain the single gas-liquid critical

Fig. 2. Phase diagram with two critical points C1,5 and C2,5 of
the same system but in the pressure-temperature plane. Solid
lines represent phase transition lines, dots represent critical
points.

point, that continues to grow towards the limiting point
Cl

5(ηl,5
c , tl,5c , pl,5

c ) = (0.1650, 0.8800, 0.0545).
According to Figures 3b, 3d, 3f, we deduce that, when

γ approaches zero, C1,5

(
η5

c1
, t5c1

, p5
c1

)
decreases towards

(0, 0, 0) faster than C2,5

(
η5

c2
, t5c2

, p5
c2

)
. This result suggests

that for a very weak attraction, the gas-liquid critical
point C1,5 would disappear and only the liquid-liquid crit-
ical point C2,5 would subsist just before crystallization de-
velops [18,19].

It is easy to show that, according to equations (9a,10)
the critical densities ηn

ci
are independent of the n values (so

we can drop the superscript n on ηn
ci

), while the critical
temperatures tnci

and pressures pn
ci

are inversely propor-
tional to n − 3, for a given value of γ. So Figures 3a, 3b
remain unchanged for any value of n. However, the points
represented in Figures 3c–3f undergo a simple translation
along the Y axis, without changing the shape of the plot-
ted curves. Therefore the phase diagram of a simple fluid
should undergo a strong modification only when the rela-
tive attraction strength with the density versus repulsion
is strongly modified.

In references [4,5], authors showed that a phase di-
agram with two liquids phases requires a balance be-
tween a repulsive soft core of width wR and an attractive
well of width wA of an isotropic potential. Clearly, the
liquid-liquid transition resulting from our potential has a
different physical origin. But we can see that γ has the
same role as wA, when the other parameters remain con-
stant. We note also, that the behaviour of the low-density
critical point C1,n is comparable with that in [5].

Fomin et al. [3], using a generalized van der Waals the-
ory showed that the existence of liquid-liquid transition is
not only determined by the interplay of the parameters
of an isotropic repulsive soft-core attractive potential, but
also by the structure of a reference liquid. Moreover, they
showed that for a very weak attraction, the system devel-
ops only a liquid-liquid phase transition. This is similar to
what we found.



64 The European Physical Journal B

Fig. 3. Behaviour of the density (a), temperature (c) and pressure (e) of the low-density critical point C1,5 (squares), and the
high-density critical point C2,5 (dots) as a function of the parameter γ with n = 5. The limiting critical point Cl

5(η
l,5
c , tl,5

c , pl,5
c ) =

(0.1650, 0.8800, 0.0545) corresponds to a γ approaching infinity; and the behaviour of the same quantities η5
ci

(b), t5ci
(d) and

p5
ci

(f) of C1,5 (squares), and C2,5 (dots) as a function of γ approaching zero.

3.2 Effect of n on the phase transitions

The potential adopted here has an important advantage.
Because it is really flexible, without counting the impact of
γ on the phase diagram by keeping n constant, it enables
us to study the evolution of the position of the low-density
critical point C1,γ

(
ηγ

c1
, tγc1

, pγ
c1

)
and the high-density crit-

ical point C2,γ

(
ηγ

c2
, tγc2

, pγ
c2

)
when γ is fixed. We find that

varying the power n does not affect the critical densi-
ties

(
ηγ

c1
, ηγ

c2

)
, indeed, they remain constant. On the other

hand, we note that the critical temperatures
(
tγc1

, tγc2

)
and

pressures
(
pγ

c1
, pγ

c2

)
decrease when n increases. Table 1

contains a few examples that illustrate our comments.
Figures 4a, 4b represent respectively the behaviour of the
temperature and pressure of the low-density critical point
and high-density critical point as a function of the poten-
tial power n.

In this study, the liquid-liquid transition has the same
physical origin as that in [14]. However, in reference [14],
it is the range of the attraction which is a function of den-
sity that leads towards this transition. The precise choice
of the potential suggested here is more judicious, because
it is based in an effective interaction fitted to some exper-
imental systems such as colloidal systems and liquid met-
als [16]. Moreover, this potential will enable us to make
a suitable study of the influence of the parameter n in
equation (4) on the position of the critical points. So we
fixed the value of γ and varied n. This situation would
correspond to the variation of the parameter n(0) in ref-
erence [14]. It is easy to verify in [14] that by increasing

n(0), the critical densities and temperatures remain un-
changed, whereas the critical pressures decrease. The be-
haviour of the critical densities

(
ηγ

c1
, ηγ

c2

)
and pressures(

pγ
c1

, pγ
c2

)
is similar to reference [14]. However, the critical

temperatures
(
tγc1

, tγc2

)
decrease as n increases. Table 1

shows, as described above, that when γ approaches zero,
the low-density critical point C1,γ

(
ηγ

c1
, tγc1

, pγ
c1

)
decreases

towards (0, 0, 0) more quickly than the high-density crit-
ical point C2,γ

(
ηγ

c2
, tγc2

, pγ
c2

)
. This still suggests that C1,γ

would disappear and C2,γ would remain just before the
crystallization.

4 Conclusion

It is known that the effective interaction of some systems
such as colloidal dispersions and liquid metals depend on
density and/or temperature. For these systems, the ther-
modynamic properties can be affected by this dependence.
Consequently, the appearance of a second critical point
in the fluid phase should be possible. In this work we
proved that the phase diagram of systems interacting via
density dependent potentials, with a constant excluded
volume, can exhibit two phase transitions: gas-liquid and
liquid-liquid.

Before the onset of crystallization and for the systems
treated here, we have found three distinct types of dia-
gram. In the first type of phase diagram (γ > γc) we have
found the usual gas-liquid critical point. In the second type
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Table 1. Some values of the low-density critical point C1,γ (ηγ
c1 , tγ

c1 , pγ
c1) and the high-density critical point C2,γ (ηγ

c2 , t
γ
c2 , p

γ
c2)

when γ is fixed.

γ = 0.006 γ = 0.008 γ = 0.01 γ = 0.02 γ = 0.03 γ = 0.04

ηc1 0.0007 0.0010 0.0012 0.0024 0.0035 0.0047
ηc2 0.0153 0.0203 0.0254 0.0503 0.0746 0.0983
tc1 0.0074/(n − 3) 0.0099/(n − 3) 0.0124/(n − 3) 0.0246/(n − 3) 0.0368/(n − 3) 0.0488/(n − 3)
tc2 0.0080/(n − 3) 0.0104/(n − 3) 0.0128/(n − 3) 0.0229/(n − 3) 0.0202/(n − 3) 0.0361/(n − 3)
pc1 1.6 × 10−6/(n − 3) 2.9 × 10−6/(n − 3) 4.6 × 10−6/(n − 3) 1.8 × 10−5/(n − 3) 4.1 × 10−5/(n − 3) 7.1 × 10−5/(n − 3)
pc2 1.9 × 10−4/(n − 3) 3.5 × 10−4/(n − 3) 5.4 × 10−4/(n − 3) 2.1 × 10−3/(n − 3) 3.6 × 10−3/(n − 3) 7.8 × 10−3/(n − 3)

Fig. 4. Behaviour of the temperature (a) and pressure (b) of
the low-density critical point C1,0.05 and high-density critical
point C2,0.05 as a function of the potential power n with γ =
0.05.

of the phase diagram (γ ≤ γc), the two critical points: gas-
liquid and liquid-liquid are present. Finally, in the third
phase diagram (γ approaches zero) we have found just a
single liquid-liquid critical point.

An effective interaction strength that depends on
the density and the variation of the relative attraction
strength versus repulsion would explain the modification
that the phase diagram undergoes. Energetic aspects can
be behind the manifestation of the second critical point in

the fluid phase resulting from a phase transition between a
low density liquid (LDL) and a high density liquid (HDL).

We thank A. Rusi El Hassani for stimulating discussions.

References

1. J.P. Hansen, I.R. McDonald, Theory of simple Liquids, 1st
edn. (Academic Press, London, 1976)

2. G. Monaco, S. Falconi, W.A. Crichton, M. Mezouar, Phys.
Rev. Lett. 90, 255701 (2003); Y. Katayama, T. mizutani,
W. Utsumi, O. shimomura, M. Yamakata, K. Funakashi,
Nature 403, 170 (2000)

3. Y.D. Fomin, V.N. Ryzhov, E.E. Tareyeva, e-print
arXiv:cond-mat/0512640

4. A. Skibinsky, S.V. Buldyrev, G. Franzese, G. Malescio,
H.E. Stanley, Phys. Rev. E 69, 061206 (2004)

5. G. Malescio, G. Franzese, A. Skibinsky, S.V. Buldyrev,
H.E. Stanley, Phys. Rev. E 71, 061504 (2005)

6. G. Franzese, G. Malescio, A. Skibinsky, S.V. Buldyrev,
H.E. Stanley, Phys. Rev. E. 66, 051206 (2002)

7. G. Malescio, G. Franzese, G. Pellicane, A. Skibinsky, S.V.
Buldyrev, H.E. Stanley, J. Phys.: Condens. Matter. 14,
2193 (2002)

8. S.V. Buldyrev, G. Franzese, N. Giovambattista, G.
Malescio, M.R. Sadr-Lahijany, A. Scala, A. Skibinsky, H.E.
Stanley, Physica A 304, 23 (2002)

9. Y. Senda, F. Shimojo, K. Hoshino, Journal of Non-
Crystalline Solids 312, 80 (2002)

10. G. Franzese, G. Malescio, A. Skibinsky, S.V. Buldyrev,
H.E. Stanley, Nature 409, 692 (2001)

11. S. Harrington, R. Zhang, P.H. Poole, F. Sciortino, H.E.
Stanley, Phys. Rev. Lett. 78, 2409 (1997)

12. S.V. Buldyrev, H.E. Stanley, Physica A 330, 124 (2003)
13. A. Daanoun, C.F. Tejero, M. Baus, Phys. Rev. E 50, 2913

(1994)
14. C.F. Tejero, M. Baus, Phys. Rev. E 57, 4821 (1998)
15. N.G. Almarza, E. Lomba, G. Ruiz, C.F. Tejero, Phys. Rev.

Lett. 86, 2038 (2001)
16. S. Amokran, M. Bouaskarne, Phys. Rev. E 65, 051501

(2002); M. Bouaskarne, S. Amokran, C. Regnaut, J. Chem.
Phys. 111, 2151 (1999)

17. T. Coussard, M. Baus, Phys. Rev. E 52, 862 (1995)
18. C.F. Tejero, A. Daanoun, H.N.W. Lekkerkerker, M. Baus,

Phys. Rev. Lett. 73, 752 (1994); C.F. Tejero, A. Daanoun,
H.N.W. Lekkerkerker, M. Baus, Phys. Rev. E 51, 558
(1995)

19. P. Bolhuis, D. Frenkel, Phys. Rev. Lett. 72, 2211 (1994);
P. Bolhuis, M. Hagen, D. Frenkel, Phys. Rev. E 50, 4880
(1994)


